二分木幅の上限を持つ通常のグラフの区画

グラフの頂点の総数、または通常のグラフの別の非スペクトル量(直径、周囲長、…)の観点から、双対幅の上限を保証した効率的なグラフ分割アルゴリズムはありますか?

Most of the bounds I find in the literature are spectral (like
Cheeger inequalities and other bounds
on the algebraic connectivity). One could combine these bounds with
bounds on the spectrum itself, such as the one in this
article
, to bound something like the sparsest cut, but this approach
provides no guarantees with respect to the actual width of
the cut (or maybe it does and it is just not clear to me?).

A (loosely) related upper bound is that the bisection width of
cubic graphs with $n$ vertices is at most $(frac16+epsilon)n,
epsilon>0$ (from this paper). Are there similar
worst-case bounds for heuristic bipartition algorithms?

ベストアンサー
申し訳ありませんが、適切な答えはありません

返信を残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です